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Quantum Gravity
Spacetime Fluctuates and has Fundamental Uncertainty

Classical Quantum

lp ⇠ 10�35 m ⇠ 10�43 s



Perturbatively, there should be no observational effects

• From usual EFT reasoning:


•       is the expansion parameter, and quantum effects enter at 


• Good reason: effects are naturally at Planckian length scales with Planckian 
frequencies, for which no experiment exists


• Any observable should be “analytic” in coupling constant G

Leads to very strong theoretical prior

Then we couple the “scalar graviton” to matter,
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and compute the tree–level gravitational potential. Introducing the notation M2
⌘ (2cr)�1

we perform a Fourier transform to finally get

V (r) = �
Gm1m2

r
(1 � e�Mr) . (325)

The current laboratory constraint on the Yukawa–type interactions imply the bound

M < 0.1 eV ) cr < 1056 . (326)

An important observation can be made by taking the limit M ! 1, in which the Yukawa
part of the potential reduces to a representation of the Dirac delta–function,
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Thus, the gravitational potential from Eq. (325) can be rewritten as

V (r) = �
Gm1m2

r
+ cr G2�(3)(x) . (328)

This expression reminds us of local quantum correction related to divergent parts of loop
integrals. In fact, this result merely reflects the fact that ⇠ R2 terms are generated by loops.

A comment is in order. The fact that the propagator of the higher–order theory (323)
can be cast in the sum of two “free” propagators suggests that there are new DOFs that
appear if we take into account the ⇠ R2 terms. In fact, non–zero ci lead to the appearance
of a scalar DOF of mass M1 (see Eq. (318)) and a massive spin–2 DOF of mass M2.

8.5 Predictions: Newton’s Potential at One Loop

So far we have made no predictions. We performed renormalization and measured (con-
strained) the free parameters of our EFT. As we learned from the example of the sigma–
model, the most important predictions of the EFT are related to non–analytic in momenta
loop contributions to the interaction vertices. They are typically represented by logarithms
and correspond to long–range interactions induced by virtual particles.19

In this subsection we will demonstrate the Newton’s potential at one loop and show that
the predictions of GR treated as an EFT are not qualitatively di↵erent from that of the
sigma–model.

At one–loop order there appear a lot of diagrams contributing to the gravitational poten-
tial. Here is a very incomplete sample of them:

+ + + ... (329)

From the power counting principles we anticipate that the one–loop amplitude will take the
form
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, (330)

19
Note that in renormalizable field theories the e↵ect of non–analytic contributions can be interpreted as

running of coupling constants with energy.
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where a, b, c1 are some constants. Then, assuming the non–relativistic limit and making use
of
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we recover the following potential in position space,
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The delta–function term is irrelevant as it does not produce any long–distance e↵ect. The a
and b terms are relevant though. By dimensional analysis we can restore the speed of light c
and the Planck constant ~ in the expression for them,
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The a–term thus represents a classical correction that appears due to the non–linearity of
GR while the b–term is a quantum correction.

An explicit calculation has been carried out in Ref. [34] and gives

a = 3 ,

b =
41

10⇡
.

(334)

The ci terms in our EFT expansion give only local contributions ⇠ �(3)(x) and thus can be
dropped. The result (333) with the coe�cients (334) should be true in any UV completion
of gravity that reduces to GR in the low–energy limit. The quantum correction (b–term) is
extremely tiny and scales as (lP /r)2 in full agreement with the EFT logic.

As for the classical correction (a–term), it agrees with the Post–Newtonian expansion in a
proper coordinate frame. Quite unexpectedly, this correction came out of the loop calculation
even though one might have thought that loop corrections should scale as powers of ~. This is
not true [35], and we can demonstrate an even simpler example of that. Consider the action
for a fermion in flat spacetime,
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Introducing ~ and c this action can be rewritten as

S = ~
Z
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One observes the appearance of ~ in the denominator, which can cancel some ~ coming from
loops and eventually result in a classical correction.

We note that calculations such as these are not limited to flat space. In particular,
Woodard, Prokopec and collaborators [36, 37, 38] have made extensive field–theoretic calcu-
lations in de Sitter space.
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Quantum Gravity and Its Observational Signatures

• Conventional wisdom is that quantum 
gravity is not observable and therefore 
the divide between theory and 
experiment is natural


• New results suggest that the 
conventional wisdom may not be correct


• New experimental tools open new ways 
to test hypotheses


• Note that we are approaching this from 
the point of view of “conventional” QG

QuRIOSQuantum Gravity and Observation

• Conventional wisdom is that 
quantum gravity is not observable — 
therefore the divide between 
quantum gravity theory and 
experiment was natural 

• New results suggest that the 
conventional wisdom is not correct 

• New experimental tools open new 
ways to test hypotheses 

• There is real hope that this situation 
can change, with intentional e!ort

Defying Conventional Wisdom

Quantum 
Mechanics Gravity

Experiment Theory



Brownian Noise
UV effects can be transmuted in infrared
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UV Scale IR Scale

Observing Time



Brownian Noise
UV effects can be transmuted in infrared
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N = Number of times particle interacts

Diffusion is simply random walk or “root-N” statistics



Quantum Gravity

OLD VIEW: VISIBLE ONLY AT SHORT DISTANCES

NEW VIEW: INFRARED EFFECTS ARE IMPORTANT

—> Fluctuations in Spacetime

lp ⇠ 10�35 m ⇠ 10�43 s

Quantum gravity     
=>  

 fluctuations in  spacetime

Old view:     
•  visible at ultra short distance           (unobservable)

 New view:     
• quantum gravity effects are “non-local” 
• visible at large distances         

~

c

G

SPACETIME

GRAVITYQUANTUM              

`p =

r
~G
c3

Planck length = 1.6⇥ 10�35m

=>  quantum gravity is observable



Black Holes Sharpen the QM / Gravity Divide
Information Loss

Throw matter into black hole.

But information can’t be lost by QM. 

Information is lost according to gravity.

New View: Non-Locality and Entanglement Play a Role



Thermodynamics of Black Holes
Black Holes have Entropy

 Entropy of a Black Hole 
= 

Area of its Horizon  

 Entropy  measures  Information 
                   it counts the number of bits                   

Bekenstein Hawking

S =
Area

4`2p

 Entropy of a Black Hole

=


Area of its Horizon  



Thermodynamics of Black Holes
Black Holes have Pixels

 Entropy  is  Information

                   it counts the number of bits                   

S =
Area

4`2p

 Entropy of a Black Hole 
= 

Area of its Horizon  

 Entropy  measures  Information 
                   it counts the number of bits                   

Bekenstein Hawking

S =
Area

4`2p



Observational Signatures of Quantum Gravity

• Degrees of freedom PIXELS can fluctuate thermodynamically


• Unobservably small in a black hole

Quantum Fuzziness at “Long” Distances
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Figure 2: The central fluctuation (+) happens to be surrounded by other fluctuations (+) of the
same sign. Fluctuations of the opposite sign (-) may occur farther away, but the central fluctuation
will not feel their influence on a timescale L.
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Figure 3: A shell of fluctuations (+) around the black hole. Since each fluctuation is of size L, a
given fluctuation cannot detect the others on a timescale less than L.

fluctuations in the horizon location. In other words, it is clear that the largest effect comes

from changes in the shape of the horizon as opposed to just the overall size.

How then shall we estimate this more localized effect on the horizon? Consider a

positive energy fluctuation of length scale L at a corresponding separation from the classical

horizon. If this induces a bulge on the horizon which is large enough to capture the

fluctuation itself, then it is clear that this must occur on a timescale5 L. Note that this

is also the natural lifetime of the fluctuation. Consider now the center of the fluctuation.

On a timescale L the center can receive no information from farther away than L. As a

result, it cannot know whether it is indeed part of a homogeneous spherical shell of such

fluctuations, or whether it is merely surrounded by an additional layer or so of similar

fluctuations6 (see figure 2). Thus, under reasonably common conditions, we should get the

right answer (as to whether the horizon bulges outward and engulfs our fluctuation) by

supposing that the black hole is in fact surrounded by a spherical shell of such fluctuations

and determining whether this shell would add enough mass to the black hole to enlarge

the horizon beyond the location of the fluctuations. Note that the shell has thickness L

(see figure 3); luckily, the calculation is just as easy for thick shells as for thin.

Let us consider a general spherically symmetric static metric of the form

ds2 = −gtt(r)dt
2 + grr(r)dr

2 + r2dΩ2
d−2, (3.1)

where as usual dΩ2
d−2 is the metric on the unit (d − 2)-sphere. We take gtt to have a

first-order zero at r = R, representing the non-degenerate black hole horizon.

In a sufficiently small region close to the horizon, we may approximate the metric in

the r, t directions by the standard Rindler metric:
5Say, as measured by freely falling observers initially at rest with respect to the black hole. Since we

are primarily concerned with the perturbative regime, we may use the metric of the original Black Hole to

compute times to leading order.
6It may just barely be able to tell whether the neighboring fluctuations have the same sign, but such a

clumping will occur a frequency which is not parametrically small, and thus is large enough for our purposes.
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Observational Signatures of Quantum Gravity

• Consider the light beams of an interferometer

An Experimental Measurement Defines a Horizon

FIG. 4. The horizon fluctuations are indicated by red (for positive) and blue (for negative) pixels.

The horizon fluctuations appear coherent in the transversal direction

rise to fluctuations in the Newtonian potential Φ. The fluctuations of the Newton potential

Φ simply shift the function f(R) via

f(R) = (1− R

L
+ 2Φ) (48)

such that we have the relation

2Φ = huhv =
δL2

4L2
. (49)

[KZ: This discussion should be made to dovetail with the discussion in the

previous section. We ultimately want to de-emphasize the temperature and em-

phasize instead the entropy.] Following the general logic of the holographic principle we

imagine that on the horizon we have one degree of freedom on every Planckian pixel. Hence,

we postulate that the total number of holographic degrees of freedom may be identified with

the entropy S associated with the horizon of spherical Rindler space

S =
A

4G
=

8π2L2

ℓ2p
. (50)

The energy associated with each degree of freedom can fluctuate by an amount of the

order or T =
1

4πL
. If all pixels would carry a positive energy of this amount, one would

create a black hole with size L. In Minkowski space, however, the average energy vanishes.

Nevertheless, there can be fluctuations of the vacuum energy inside this causal diamond.

21



What Length Fluctuations Can be Measured?
e.g. in LIGO

�L

L
⇠ 10�20

�L ⇠
p

lpL

FIG. 4. The horizon fluctuations are indicated by red (for positive) and blue (for negative) pixels.

The horizon fluctuations appear coherent in the transversal direction

rise to fluctuations in the Newtonian potential Φ. The fluctuations of the Newton potential

Φ simply shift the function f(R) via

f(R) = (1− R

L
+ 2Φ) (48)

such that we have the relation

2Φ = huhv =
δL2

4L2
. (49)

[KZ: This discussion should be made to dovetail with the discussion in the

previous section. We ultimately want to de-emphasize the temperature and em-

phasize instead the entropy.] Following the general logic of the holographic principle we

imagine that on the horizon we have one degree of freedom on every Planckian pixel. Hence,

we postulate that the total number of holographic degrees of freedom may be identified with

the entropy S associated with the horizon of spherical Rindler space

S =
A

4G
=

8π2L2

ℓ2p
. (50)

The energy associated with each degree of freedom can fluctuate by an amount of the

order or T =
1

4πL
. If all pixels would carry a positive energy of this amount, one would

create a black hole with size L. In Minkowski space, however, the average energy vanishes.

Nevertheless, there can be fluctuations of the vacuum energy inside this causal diamond.
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Parametrically the same as a quantum uncertainty of a 
black hole horizon



Holographic Principle

• The information of quantum gravity is 
encapsulated in the number of degrees of 
freedom on the Area bounding a volume


• Any horizon, not just a black hole horizon!

The World as a Hologram

 Entropy of a Black Hole 
= 

Area of its Horizon  

 Entropy  measures  Information 
                   it counts the number of bits                   

Bekenstein Hawking

S =
Area

4`2p

Any horizon!

E. Verlinde, KZ 1911.02018
E. Verlinde, KZ 1902.08207



Calculate Vacuum Fluctuation

• Number of holographic degrees of freedom is the entropy


• Each d.o.f. has temperature set by size of volume


• Statistical argument: 

Step 1

S =
A

4GN
=

8⇡2R2

l2p
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T =
1

4⇡R
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�M ⇠
p
ST =

1p
2lp
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FIG. 4. The horizon fluctuations are indicated by red (for positive) and blue (for negative) pixels.

The horizon fluctuations appear coherent in the transversal direction

rise to fluctuations in the Newtonian potential Φ. The fluctuations of the Newton potential

Φ simply shift the function f(R) via

f(R) = (1− R

L
+ 2Φ) (48)

such that we have the relation

2Φ = huhv =
δL2

4L2
. (49)

[KZ: This discussion should be made to dovetail with the discussion in the

previous section. We ultimately want to de-emphasize the temperature and em-

phasize instead the entropy.] Following the general logic of the holographic principle we

imagine that on the horizon we have one degree of freedom on every Planckian pixel. Hence,

we postulate that the total number of holographic degrees of freedom may be identified with

the entropy S associated with the horizon of spherical Rindler space

S =
A

4G
=

8π2L2

ℓ2p
. (50)

The energy associated with each degree of freedom can fluctuate by an amount of the

order or T =
1

4πL
. If all pixels would carry a positive energy of this amount, one would

create a black hole with size L. In Minkowski space, however, the average energy vanishes.

Nevertheless, there can be fluctuations of the vacuum energy inside this causal diamond.

21
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p
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2nd mirror

1st mirror

FIG. 1. The interferometer inside a causal diamond.

The photon path coincides with the Rindler horizon located at ⇢ = 0, but its position

can fluctuate over a distance �⇢. Instead of using the functions �v(u) and �u(v) we can

thus parametrize the entire photon trajectory in terms of a single function �⇢2(⌧) in Rindler

space. The reason for adding the square will become clear below.

The relationships between the function �⇢2(⌧) with �v(u), and respectively �u(v), is found

by solving the implicit equations

�⇢2(u) = (L � u)�v(u) and ⌧(u) =
1

2
log

�v(u)

L � u
(15)

for the first part of the trajectory and

�⇢2(v) = (L+ v)�u(v) and ⌧(v) = �1

2
log

�u(v)

L+ v
(16)

for the second part, where for the moment we suppressed the dependence on the transversal

coordinates. These pair of trajectories need to be matched at the spacetime location at

which the photons reach the second mirror. In light cone coordinates this reflection point

corresponds to (u, v) = (�u(�L), �v(L)), which translates in terms of Rindler coordinates

to the following equations

�⇢2(L) = �u(�L)�v(L) and ⌧(L) =
1

2
log

�u(�L)

�v(L)
(17)

6

Vacuum Fluctuation Sources Metric Fluctuation 
Step 2

�L ⇠
p

lpL
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4

Here we have put the moment of reflection at T = 0, so
that �v(L) and �u(L) take the same value. The next step
is to determine the value of the Newton potential �(L)
that is induced by the vacuum fluctuations in the energy
conjugate to the time coordinate T .

Holographic model for spacetime fluctuations.

We are now ready to employ all of our postulates together
to compute the deviations in the Newtonian potential,
Eq. 16. In the following analysis we follow closely the
reasoning of Marolf in Ref. [16] for the quantum thickness
of black hole horizons. Directly applying the holographic
principle to the horizon of the causal diamond gives

Shor =
A

4GN
=

8⇡2L2

l2p
. (17)

Now the Newtonian potential on the horizon equals

�(L) = �
l2p�M

8⇡L
, (18)

where �M is the RMS value of the energy fluctuations
in the holographic degrees of freedom. Heuristically, one
expects that �M scales as the square root of the number
of pixels on the horizon, times the typical energy of the
fluctuation, which is given by the Hawking temperature.

One of the standard methods to determine the Hawk-
ing temperature is to go to Euclidean time and impose
that the resulting metric is free from conical singularities.
In this way one finds

Thor =
|f 0(L)|

4⇡
=

1

4⇡L
. (19)

In the present situation the temperature Thor is mea-
sured by an accelerated observer whose event horizon co-
incides with the photon trajectory and whose own tra-
jectory passes through the origin at T = 0. This observer
stays at R = 0 and has T as proper time coordinate.

We now calculate the RMS value of the fluctuations,
by assuming that the vacuum energy E vanishes. This
implies that the free energy F (�) equals

F (�) = �ThorShor = � �

2l2p
(20)

where in the last step we eliminated the length L in fa-
vor of the inverse temperature � = 1/Thor = 4⇡L. In the
canonical ensemble the mass fluctuations �M are ob-
tained by taking the second derivative of the free energy.
One thus obtains

h�M2i = � @2

@�2
(�F ) =

1

l2p
. (21)

Note that �M ⇠ Thor
p

Shor, as expected from the
heuristic argument. Combining Eqs. 16-21, we learn

⌧
�L2

L2

�
=

l2p
p

h�M2i
⇡L

=
lp
⇡L

. (22)

Note this has precisely the behavior shown in Eq. 5
needed to be observable, where now we can fix the con-
stant C via the holographic principle. The spectrum, as
shown in Eq. 4, is white noise at low frequencies, but is
filtered at higher frequencies. As we will see, the distinc-
tive experimental signature is in the angular correlations
arising from the Newtonian potential itself.
Angular correlations and ’t Hooft’s S-matrix.

We have considered so far the amplitude of the fluctua-
tions only as a function of the longitudinal coordinates.
Physically it is clear that the fluctuations will also have
an angular dependence, which is described statistically in
terms of the two point correlation function of the coordi-
nate shifts �v(r̃) and �u(r̃), where r̃ denotes the coordi-
nates on the sphere of radius L. This angular information
can again be determined with the help of the Newtonian
potential, namely by applying a spherical harmonic de-
composition. By generalizing our reasoning to include
the angular coordinates, one obtains the following two
point function for the coordinate shifts

⌦
�v(r̃1)�u(r̃2)

↵
=

lpL

⇡
G(r̃1, r̃2), (23)

where G(r̃1, r̃2) represents the Green function of a mod-
ified Laplacian on the sphere. It obeys

✓
�r2

r̃1 +
1

L2

◆
G(r̃1, r̃2) = �(2)(r̃1, r̃2), (24)

and appears by integrating the 3D Green function along
the radial direction corresponding to the beam. At short
distances it behaves as the normal Green function on the
2D-plane

G(r̃1, r̃2) ⇠ 1

2⇡
log

✓
L

|r̃1�r̃2|

◆
for |r̃1�r̃2|<<L.(25)

In terms of spherical harmonics it has the expansion

G(r̃1, r̃2) =
X

`,m

Y`,m(r̃1)Y ⇤
`,m(r̃2)

`2 + ` + 1
. (26)

Using the relation between metric and length fluctuations
given by Eq. 13, this uncertainty relation can be written
in terms of the coe�cients, v`m and u`0m0 , of the decom-
position of �v(r̃) and �u(r̃) in to spherical harmonics,

⌦
v`mu`0m0

↵
=

1

⇡

lpL

`2 + ` + 1
�``0�mm0 . (27)

This relation tells us that much of the power in the fluctu-
ations is contained in the low ` modes, and thus appears
on the largest scales, contrary to one’s intuition about
Planckian e↵ects.

Our result implies a fundamental uncertainty relation
between the longitudinal spacetime components. We
briefly comment on the connection with the work by ’t
Hooft on the gravitational S-matrix. As ’t Hooft showed,
the in-going and out-going radiation at the horizon causes
a spacetime shift due to gravitational shock waves. He

� ⇠ lp
L
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� ⇠ huuhvv ⇠ �L2

L2
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H. “Pixellon”

One Mountain, Many Faces
Equivalent physical descriptions

C. Gravitational effective action / saddle point expansion

E. Hydrodynamics EFT

F. 2-d Models, e.g. JT gravity

D. Shockwaves and 
Gravitational Memory

A. AdS/CFT

B. Light Ray Operators
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Why computing gauge invariant observables in hard

• At the moment we can compute, from first principles at the light-sheet horizon of a 
single causal diamond


• Need information of time-like trajectories of mirrors


• Correlations between causal diamonds

Requires knowing the global (time-dependent) metric

14

FIG. 2: The causal diamond in Rindler-AdS space is foliated with a series nested causal

diamonds. The separation between two adjacent diamonds is the decoherence length ˜̀
p. Each

nested causal diamond intersects with the past (future) light front at a bifurcate horizon along

the past (future) light front. The highlighted region corresponds to the near-light-sheet region of

spacetime, where quantum fluctuations cause a probe photon to undergo random walk.

regularization scheme thus will not impact the overall physical picture since the dimensionful

scales match between the present hydrodynamic calculation and the result of Ref. [1].

In summary, Eq. (35) together with Eq. (36), at a fixed point on the past or future null horizon,

implies a non-vanishing two-point function of huu and hvv given by

⌦
huu(u,x?)huu(u

0
,x0

?)
↵
=

`
d�2
p

2⇡ ˜̀p
�(u� u

0)f(x?;x
0
?), (37)

⌦
hvv(v,x?)hvv(v

0
,x0

?)
↵
=

`
d�2
p

2⇡ ˜̀p
�(v � v

0)f(x?;x
0
?). (38)

In the next Section, we study how these fundamental commutators can be evolved to give the

to heuristically connect holography to interferometry (e.g.
[8, 9, 10, 11, 12]), our theoretical description is structurally
unique in its holographic set-up. And although the first
steps we take–employing a Planckian random walk–shares
commonalities with these works, our approach di↵ers in
the sense that we present a concrete theoretical model
leading to length fluctuations along the longitudinal di-
rection with a distinctive signature for strong transverse
correlations, which is, as a consequence, macroscopically
observable in an interferometer. A phenomenological re-
sult is that constraints from the images of distant astro-
physical sources derived for uncorrelated fluctuations in
Refs. [13, 14] do not apply to our model.

2. Length Fluctuations with Planckian White Noise

In this paper we consider a toy experimental set-up,
shown in Fig. 1, in which the arm length L of an inter-
ferometer is measured after a single light crossing. In this
idealized scenario the length fluctuations �L due to quan-
tum fluctuations in the metric is given by

�L(t) =
1

2

Z L

0
dz h(t+z�L) (1)

where h ⌘ hzz is the metric component along the light
beam propagation (see e.g. [15]). The magnitude of these
length fluctuations is normally expressed in terms of the
power spectral density (PSD)

S(!, t) =

Z 1

�1
d⌧

⌧
�L(t)

L

�L(t � ⌧)

L

�
e�i!⌧ . (2)

Let us first consider a simple model with a white noise
signal of Planckian amplitude

⌦
h(t+z1�L)h(t+z2�L�⌧)

↵
= Clp�(⌧ +z1�z2), (3)

where lp =
p

8⇡GN . This leads to a PSD of the form

S(!) =
Clp
4

sin2 !L

!2L2
. (4)

In this simple model the length fluctuations h�L2i obey
⌧

�L2(t)

L2

�
=

1

2⇡

Z 1

�1
d! S(!) =

Clp
8L

, (5)

and thus grow linearly with L [8, 9, 10, 11, 12]. This signal
could in principle be observable, since the peak sensitiv-
ity for gravitational wave interferometers is right around
the Planck scale: S(!, t) . lp. Over the next sections our
goal will be to show how some of the generic behavior in
Eqs. 4, 5 can arise from a holographic model, motivating
the size of the constant C, with crucial observational ef-
fects arising from angular correlations. In addition, in ex-
periments like LIGO and Virgo a typical photon traverses
the interferometer arm multiple times before being mea-
sured. In this paper we continue to focus on our simple set
up and defer the detailed discussion of multiple crossings
to future work.

3. Holographic Scenario and Basic Postulates

Our aim in the following is to derive a result similar
to Eq. 5 from a holographic scenario, in which the holo-
graphic surface is fixed by the light path of a photon, as
depicted in Fig. 1. In order to clearly delineate between
theoretical input and observational consequences, we will
state here our basic postulates:

1. Holographic principle in flat spacetime. We postu-
late that the holographic principle also applies to
Minkowski spacetime. It states that the maximal
entropy carried by the microscopic degrees of free-
dom associated with a finite region of flat spacetime
bounded by null geodesics is S = A/4GN . This
bound is saturated for a region of space whose null
boundary coincides with a horizon.

2. Universality of metric fluctuations at horizons. We
postulate, as a corollary of the first postulate, that
metric fluctuations near null surfaces associated with
the boundary of a finite region follow from the en-
tropy and temperature using standard thermody-
namic considerations. This postulate implies that
metric fluctuations near a Rindler-type horizon are
identical to those near a black hole horizon with the
same temperature and entropy.

Note that we are treating the metric fluctuations at
the holographic surface separating the inside of the causal
diamond from the outside as if it were a black hole hori-
zon (see Ref. [16]), even though we are considering the
vacuum of Minkowski space. The basic reason we believe
these are reasonable postulates is that a finite causal dia-
mond in Minkowski space, when suitably foliated, can be
recast in the metric of a so-called topological black hole
[17]. Furthermore, a conformal field theory restricted to
the diamond behaves as a thermal field theory [17], and
the quantized Einstein-Hilbert metric in the infrared be-
haves as a conformal field theory. In related work [18], we
show that these postulates are justified in the context of
AdS/CFT. That they hold for the Einstein-Hilbert metric
in Minkowski space must, at the present time, be ulti-
mately verified by experiment. Fortunately, we show that
the experimental signatures associated with a spacetime
obeying these postulates are within reach with current in-
terferometer technology.

4. Towards Macroscopic E↵ects in Interferometers

The results in Eqs. 3-5, that were derived from the
simple 1D-model, are by themselves not su�cient to show
an e↵ect. In order to be observable in a realistic experi-
mental set up, the fluctuations must be coherent at macro-
scopic spacetime distances. To examine the conditions un-
der which such coherent fluctuations occur, we extend our
model by including the two spatial directions transverse
to the beam direction. Anticipating our holographic de-
scription, we consider metric fluctuations that depend on

2



Equivalent Physical Descriptions

• The “pixellon.”


• Bosonic excitation modeling hydro mode
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compute fluctuations in the bulk (AdS) geometry. The
fluctuations of the modular Hamiltonian have been cal-
culated in the AdS bulk [8], with the result

β2〈∆K2〉 = A(Σ)

4G
. (2)

With suitable identifications, this result agrees with an
equivalent boundary calculation [9], and with the “ca-
pacity of entanglement” [10, 11]. This implies that, when
restricted to a finite part of the spacetime (defined by a
causal diamond with bifurcate horizon Σ), the vacuum
has energy fluctuations ∆K #= 0.
Eqs. (1), (2) together encourage an interpretation of

spacetime as bits of information, with the number N
of degrees-of-freedom in a given volume bounded by a
surface of area A given by the entanglement entropy

Sent = N =
A

4G
. (3)

This result can be interpreted in light of the fact that the
vacuum state of any QFT, restricted to a causal diamond,
is given by a thermal density matrix [12]

ρβ =
e−βK

Zβ
. (4)

For example, in a high-temperature system with
Maxwell-Boltzmann statistics, the root-mean-square
fluctuations of these N degrees-of-freedom is given by

√

〈∆K2〉
〈K〉 =

1√
N

, (5)

in agreement with Eqs. (1), (2). It was shown in Ref. [8]
that the fluctuations in the modular Hamiltonian, ∆K,
gravitate and hence, for certain observers, behave like a
mass, sourcing metric fluctuations.
It is not precisely known whether the vacuum state of

quantum gravity in ordinary flat space, when restricted
to a causal diamond, can be described by Eq. (4), and
whether the results derived for AdS/CFT apply to the
Universe we observe. There are reasons to think that
entropy, entanglement and their connection to geometry
are very generic concepts that apply to any spacetime,
including ours. Such ideas underly currents dating more
than twenty years on the entropic and holographic nature
of spacetime [6, 13, 14]. For example, it was shown in
Ref. [7] that taking fixed volume variations of the first
law of entanglement gives rise to the Einstein Equations.
In this letter we approach quantum gravity in flat space

in terms of observational signatures derived from a model
motivated by the known AdS/CFT results. If vacuum
fluctuations could be observed in an experiment consis-
tent with an entropic or thermal nature of the vacuum
state, this would be a leap forward in our understanding
of quantum gravity. To this end, we propose a simple
model for the degrees-of-freedom in the density matrix,
which we call pixellons because the excitations are asso-
ciated with each holographic pixel of a volume bounded

by an entangling surface of area A. More specifically, we
consider whether fluctuations in the spacetime degrees-
of-freedom of the density matrix Eq. (4) could be ob-
servable as fluctuations in the arm length of an inter-
ferometer. The two arms of an interferometer mark out
a (spherically symmetric) volume of spacetime with the
beamsplitter at the center of the volume and the mirrors
on the surface with area A; the interferometer measures
the geometric fluctuations in this volume.

The motivation for our pixellon Ansatz is as follows.
Based on the discussion of Eqs. (1)-(3), we interpret the
spacetime volume bounded by a surface of area A as
having N bits with total energy 〈K〉. The energy per
bit is then ω ∼ β−1 ∼ 1/L. However, it was shown
in Ref. [8] that 〈K〉 itself does not gravitate; rather the
fluctuations ∆K gravitate. From this point of view, 〈K〉
should be treated as a chemical potential counting the
background degrees-of-freedom, and the energy per exci-
tation is βω = ∆K/K = 1/

√
N & 1. We assume the

low-energy excitations will be bosonic; this is appropri-
ate because, as we will see below, they are associated
with a gravitational potential. Because the energy of
these bosonic degrees-of-freedom is so low, βω & 1, they
will form a high-occupation-number bosonic state. We
further show that such low-energy bosonic excitations of
the vacuum, when gravitationally coupled to test masses,
may give rise to observably large fluctuations of the mir-
ror positions in an interferometer.

The detailed outline of our proposal is as follows. In
the next section we introduce the bosonic excitations as
vacuum fluctuations, and we suggest that these bosonic
fluctuations be associated with a scalar gravitational po-
tential. In the following section, we propose that these
scalar degrees-of-freedom have a Bose-Einstein density-
of-states and a high occupation number due to their low
energy. Then, we gravitationally couple the pixellons to
a test mass whose position fluctuates due to the boson
fluctuations. We utilize the Feynman-Vernon influence
functional–a path integral realization of the fluctuation-
dissipation theorem–to compute the size of those fluc-
tuations. We will conclude that vacuum fluctuations
from a thermal density matrix can give rise to interfer-
ometer mirror position fluctuations that appear as noise
with a peculiar angular correlation, a smoking gun signa-
ture. Note that while the experimental system of interest
for measuring metric fluctuations, an interferometer, and
the motivation derived from the discussion surrounding
Eqs. (1)-(5), is the same as Ref. [8, 15], the models op-
erationally share no overlap. We will nevertheless find a
very similar effect, perhaps suggesting dual languages to
describe the vacuum state of quantum gravity.

Pixellons and Vacuum Fluctuations. As out-
lined in the introduction, excitations of the degrees-of-
freedom, associated with the entanglement entropy of a
finite volume of space, we refer to as pixellons. We expect
that pixellons are complicated non-linear states of all the
degrees-of-freedom available in the complete theory. Our
goal is to describe a consistent low-energy theory based

Number of bits or “pixels”
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We model vacuum fluctuations in quantum gravity with a scalar field, characterized by a high

occupation number, coupled to the metric. The occupation number of the scalar is given by a

thermal density matrix, whose form is motivated by fluctuations in the vacuum energy, which have

been shown to be conformal near a light-sheet horizon. For the experimental measurement of interest

in an interferometer, the size of the energy fluctuations is fixed by the area of a surface bounding

the volume of spacetime being interrogated by an interferometer. We compute the interferometer

response to these “geontropic” scalar-metric fluctuations, and apply our results to current and future

interferometer measurements, such as LIGO and the proposed GQuEST experiment.

I. INTRODUCTION

Traditional wisdom in e↵ective field theory (EFT) sug-

gests that quantum fluctuations in the fabric of spacetime

should be of the order of ⇠ lp =
p

8⇡G~/c3 ⇠ 10�34 m,

where G, ~, c, and lp are the gravitational constant, re-

duced Planck constant, speed of light, and Planck length

respectively. Fluctuations on such small time and length

scales are experimentally undetectable.

It has, however, been recently argued in multiple di↵er-

ent contexts that the length scale L of the physical system

itself may enter into the observable [1–6] (see Ref. [7] for

a summary)

*✓
�L

L

◆2
+

⇠ lp

L
, (1)

where �L is the quantum fluctuation of L. For example,

in Refs. [1, 4], L is the length of interferometer arm in flat

spacetime. More generally, L can be the size of a causal

diamond in dS, AdS, and flat spacetime [2, 3]. These

works argued that the naive EFT reasoning is corrected

by long-range correlations in the metric fluctuations–such

as are known to occur in holography–which allow the UV

fluctuations to accumulate into the infrared. A physi-

cal analogue is Brownian motion (discussed in Ref. [7])

where the interactions occur at very short distances but

⇤ dlli@caltech.edu
† szehiml@caltech.edu
‡ yanbei@caltech.edu
§ kzurek@caltech.edu

become observable on long timescales as the UV e↵ects

accumulate.

While the calculations presented in Refs. [1–5] are

firmly grounded in standard theoretical techniques, such

as AdS/CFT, they have not yet provided important, de-

tailed experimental information, such as the power spec-

tral density. This was the motivation behind the model

of Ref. [4], to provide a framework that reproduces im-

portant behaviors of the UV-complete theory while also

allowing to calculate detailed signatures in the infrared.

In the language of the Brownian motion model, while the

fluctuations arise from local interactions, the observable

is only defined globally. In the language of an interferom-

eter experiment, one cannot measure spacetime fluctua-

tion within a portion of an interferometer arm length, but

must wait for a photon to complete a round trip before

making a measurement of the global length fluctuation

across the entire arm.

In this work, we continue along the lines of Ref. [4],

utilizing a scalar field coupled to the metric to model

the behavior of the spacetime fluctuations proposed in

Refs. [1–5]. In particular, we propose a model in four di-

mensions, where the metric appears as a breathing mode

of a sphere controlled by a scalar field �:

ds
2 = �dt

2 + (1 � �)(dr
2 + r

2
d⌦2) . (2)

Since � e↵ectively controls the area of a spherical sur-

face, it is thus proportional to the entropy of a causal

diamond, and may be identified with the dilaton mode

studied in Refs. [3, 5]. In the model we consider, � is a

scalar field whose quantum fluctuations will be charac-
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based on fluctuations in the modular Hamiltonian K

K =

Z

B
Tµ⌫⇣

µ
KdB

⌫
, (4)

where B is some spatial region with a stress tensor Tµ⌫ ,

dB
⌫ is the volume element of B (with dB

⌫ pointing in

the time direction), and ⇣
µ
K is the conformal Killing vec-

tor of the boost symmetry of ⌃, the entangling surface

between B and its complement B̄ [2, 8]. One can map B

to Rindler space, so ⌃ is also a Rindler horizon. In the

context of AdS/CFT, where Tµ⌫ is the stress tensor of the

boundary CFT, both the vacuum expectation value and

the fluctuations of the modular Hamiltonian are known

to obey an area law in vacuum [2, 9, 10]

hKi = h�K
2i =

A(⌃)

4G
, (5)

where A(⌃) is the area of ⌃. One tempting interpretation

of this relation is that hKi ⌘ N counts the number of

gravitational bits, or pixels, in the system, which is fur-

ther motivated by the fact that the entanglement entropy

Sent = hKi is known to hold in a CFT. The fluctuations

of those N bits then satisfy “root-N” statistics:

|�K|
hKi =

1p
N

, (6)

where |�K| =
p

h�K2i represents the amplitude of the

modular fluctuation.

While the precise relation hKi = h�K
2i is demon-

strated only in the context of AdS/CFT, one can place

a Randall-Sundrum brane in the (5-d) bulk of AdS, in-

ducing gravity on the (flat 4-d) RS brane, and show that

Eq. (5) holds on the 4-d brane [3]. The measuring appara-

tus can then be placed on the flat 4-d brane. Further, as

shown in [3, 11, 12], gravity is approximately conformal

near the horizon. For an interferometer, the light beams

are probing the near-horizon geometry of the spherical

entangling surface ⌃ bounding it (shown in Fig. 1), so

Ref. [3] argued that the correlator of stress tensor takes

the same form as any CFT. Thus, h�K
2i follows Eq. (5),

i.e.,

h�K
2i ⇠

Z
d
2yd

2y0 dr dr
0
r r

0

((r � r0)2 + (y � y0)2)4

⇠ A

Z
dr dr

0
r r

0

(r � r0)6
⇠ A

�2
⇠ A

l2p

, (7)

where y denotes the transverse directions (correspond-

ing to the coordinates on ⌃), and G ⇠ �
2 corresponds

to a UV cut-o↵ in the theory at a distance scale � ⇠ lp.

In our case, r � r
0 ⇠ � corresponds to the distance to

the (unperturbed) spherical entangling surface ⌃ in our

setup shown in Fig. 1. A similar relation holds for hKi.
More generally, as found in [13], an area law for entan-

glement entropy does not hold only for a CFT but also

any massless scalar QFT, which also motivates the scalar

model of geoentropic fluctuations in [4] and this work.

The idea of Ref. [4] was thus to model the gravitational

e↵ects of modular fluctuations with a massless scalar

field, dubbed a “pixellon.” Since pixellons are bosonic

scalars, their creation and annihilation operators (a, a
†)

satisfy the usual commutation relation

⇥
ap1 , a

†
p2

⇤
= (2⇡)3�(3)(p1 � p2) . (8)

We are interested in modeling the impact of the (fluctu-

ating) e↵ective stress tensor in Eq. (13). We will do this

by allowing for a non-zero occupation number �pix(p),

Tr
�
⇢pixa

†
p1

ap2

�
= (2⇡)3�pix(p1)�

(3)(p1 � p2) (9)

such that

Tr
�
⇢pix{ap1 , a

†
p2

}
�

= (2⇡)3 [1 + 2�pix(p1)] �
(3)(p1�p2) .

(10)

The occupation number should be consistent with the

modular energy fluctuation, Eq. (6), as we will check ex-

plicitly at the end of this section.

The pixellon couples to the metric and sources the

stress tensor at second order in perturbations. In gen-

eral, we can consider a metric of the form

gµ⌫ = ⌘µ⌫ + ✏hµ⌫ + ✏
2
Hµ⌫ + ... , (11)

where ✏ is a dimensionless parameter that denotes the or-

der in perturbation theory. The vacuum Einstein Equa-

tion (EE) is, parametrically [14],

Gµ⌫ = ✏
⇥
r2

h
⇤
µ⌫

+✏
2
⇣⇥

r2
H
⇤
µ⌫

� l
2
pTµ⌫

⌘
+... = 0 , (12)

where the precise form of the equations of motion (e.g.,

numerical prefactors in the time and spatial derivatives)

will depend on the precise form of the metric that we

consider below, and where the e↵ective stress tensor is

2

terized by its occupation number, which we label as �pix.

The subscript denotes “pixellon” following the proposal

of Ref. [4], referring to the pixels of spacetime whose fluc-

tuations the scalar field is modeling.

In particular, the quantum fluctuations of the scalar,

since they couple to the metric, will give rise to fluc-

tuations in the round-trip time for a photon to tra-

verse from mirror to mirror in an interferometer, as de-

picted in Fig. 1. Similar to Ref. [4], our main goal is to

compute the gauge invariant interferometer observable

arising from the metric Eq. (2), with � being a scalar

field having a high occupation number. In contrast to

Ref. [4], which calculated length fluctuations utilizing the

Feynman-Vernon influence functional in a single inter-

ferometer arm, we will use only linearized gravity and

the QFT of a scalar field with a given occupation num-

ber. We will thus be able to extend the previous work

in Ref. [4], calculating both the power spectral density

and angular correlations in the interferometer arms in a

manifestly gauge invariant way, checking previous claims

made in Ref. [1], as well as making new predictions. Note

that while the model is not yet uniquely derived from

first principles in the ultraviolet (utilizing for example

shockwave geometry [6]), we will argue below that it is

nevertheless well-motivated from first principles.

More specifically, we consider an interferometer with

two arms of equal length L, i.e., with spherical symmetry,

and separated by angle ✓, as depicted in Fig. 1. We

assume that the first arm as the reference beam points

in the direction n1, and the second arm as the signal

beam points in the direction n2. We will find that the

observable takes the form:

⌧
�T (t1,n1)�T (t2,n2)

4L2

�

=
l
2
p

4L2

Z L

0
dr1

Z L

0
dr2

Z
d
3p

(2⇡)3
�pix(p)

2!(p)
F(r1, r2, p, �x) ,

(3)

where �T (t,n) denotes the fluctuation of time delay of

light beam sent at time t � L along the direction n, and

p = (!,p), �x = (�t, �x) are four-vectors. The main

object of interest in this paper is F(r1, r2, p, �x), which

encapsulates the response of the interferometer gravita-

tionally coupled to the scalar field �.

The rest of the paper is organized around deriving

Eq. (3). In Sec. II, we review the pixellon scalar field

FIG. 1. Setup of the interferometer.

model, with an occupation number �pix motivated in par-

ticular by [4], but also by work demonstrating that the

e↵ect of interest is a breathing mode of the horizon [3, 5].

We then couple this scalar field to the Einstein-Hilbert

action and derive its equation of motion. In Sec. III, we

perform a linearized gravity calculation and derive the

observable. In particular, we compute the interferom-

eter response function F(r1, r2, p, �x) from our specific

model. In Sec. IV, we compute the relevant power spec-

tral density and angular correlation from Eq. (3). We

then discuss various existing experimental constraints.

Finally, in Sec. V, we conclude. Throughout the paper

we will work in units ~ = c = kB = 1 while keeping the

gravitational constant G = l
2
p/(8⇡) explicit.

II. SCALAR FIELD QUANTUM

FLUCTUATIONS IN A CAUSAL DIAMOND

The main goal of this section is to motivate the form

of the scalar occupation number, �pix, that will be cou-

pled to the metric. Our discussion here is mostly based

on Ref. [4], though, as mentioned previously, it is also

broadly consistent with the dilaton model presented in

Ref. [3, 5].

The e↵ect of interest, as presented in Refs. [1, 2] is

Li, Lee, Chen, KZ 2209.07543
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Equivalent Physical Descriptions

• Distinctive Angular Correlations Predicted already in VZ1


• Consistent with LIGO and Holometer data
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FIG. 6. Strain comparison between model predictions (blue and green) and experimental / projection constraints (red). The
model curves are computed using Eqs. (44), (45), (59), (64) and (65) assuming ↵ = 1, while the experimental curves are
extracted from Refs. [25, 29–31]. The LIGO data shown here are obtained by the Livingston detector, but we note that the
Hanford detector yields similar constraints.

and

�� = 2!0Lh/c . (68)

In this way, the ��-referred spectrum is related to Sh

published by LIGO via

p
S�� =

2!0L

c

p
Sh . (69)

We note that at higher frequencies, and/or for interfer-

ometers with longer arms, the conversion from h to �

Li, Lee, Chen, KZ 2209.07543
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wave geometry (e.g., see Refs. [6, 22–24]), a connection

we would like to study further in our future work.

One might also be interested in the amplitude c̃`m(!)

of each (`, m) mode of the power spectral density C̃(!, ✓).

Performing a Fourier transform of C(�t, ✓) in Eq. (53)

and thus a Fourier transform of A`m(�t, !, r1, r2) in

Eq. (52), we obtain

c̃`m(!) =
alp

2c3sL
2

Z L

0
dr1

Z L

0
dr2 A`m(0, !, r1, r2) . (56)

We have plotted c̃`m(!) starting from ` = 1 in Fig. 5.

To determine an analytical representation of the am-

plitude of each (`, m) mode, one can also look at

A`m(0, !, r1, r2) at the end points r1 = r2 = L. If we

integrate A`m(0, !, L, L) over !, we find the amplitude

of each (`, m) mode at end points to be

L

Z 1

0
d! A`m(0, !, L, L) =

⇡cs

2(2` + 1)
, (57)

which is the major contribution to c`m plotted in Fig. 4.

Although Eq. (57) decreases more slowly than Eq. (55)

over `, we have additional suppression due to, for ex-

ample, the factors of cos [!(L � r1,2)] in Eq. (52) when

integrating A`m(0, !, r1, r2) over ! and r1,2, so the total

amplitude in Eq. (54) is very close to Eq. (55) without

the IR regulator.

C. IR cuto↵

In this section, we apply the calculations in the previ-

ous two sections to the pixellon model with an IR cuto↵.

As discussed above, although both C̃(!, ✓) and C̃T (!, ✓)

are regular in the IR, we still expect an explicit IR cut-o↵

to enter the calculation because of the finite size of the

interferometer. We will also find that adding an IR cut-

o↵ gives a better agreement with the angular correlation

of Eq. (55). For this reason, we place an IR cuto↵ at a

scale ⇠ 1
L2 , similar to [1], into Eq. (41), e.g.,

C(�t, ✓) =
alp

8L2

Z L

0
dr1

Z L

0
dr2

Z
d
3p

(2⇡)3
1

!2(p) + 1
L2

cos [!(L � r1)] cos [!(L � r2)]e
�i!�t+ip·�x

.

(58)

Following the same procedure in Sec. IV A, we find

that the power spectral density C̃(!, ✓) in Eq. (44) is

FIG. 4. The amplitude of each (`,m) mode of the equal-
time correlation function C(0, ✓) decomposed into spherical
harmonics. The blue and green lines correspond to the am-
plitude in [1] [i.e., Eq. (55)] without and with an IR regulator,
respectively. The red and orange lines correspond to c`m [i.e.,
Eq. (54)] of the pixellon model without IR cuto↵ in Eq. (52)
and with an IR cuto↵ in Eq. (62), respectively. We have nor-
malized the amplitude of each mode by the amplitude of the
mode ` = 1.

modulated by an additional factor in ! and L, i.e.,

C̃(!, ✓) !
✓

!
2

!2 + 1
L2

◆
C̃(!, ✓) , (59)

while C̃T (!, ✓) is still given by Eq. (45). CT (0, ✓) and

C̃T (!, ✓) with this IR cuto↵ are shown in Figs. 2 and 3,

respectively.

One major e↵ect of the IR cuto↵ is that the ampli-

tude of C̃(!, ✓) is suppressed at low frequency due to the

modulation factor in Eq. (59), as one can directly observe

in Fig. 3. For the same reason, the overall amplitude of

CT (�t, ✓) in the case with an IR cuto↵ is smaller than the

one without IR cuto↵ as depicted in Fig. 2. As frequency

increases, the modulation factor goes to 1, so the ampli-

tude of C̃(!, ✓) in these two cases becomes nearly identi-

cal. In addition, as the separation angle ✓ decreases, the

di↵erence between these two cases also becomes smaller

since interferometers with smaller ✓ are more sensitive

to higher ` modes, which have higher characteristic fre-

quency, and thus are less sensitive to the IR cuto↵.

One can also determine the suppression factor due to
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and

�� = 2!0Lh/c . (68)

In this way, the ��-referred spectrum is related to Sh

published by LIGO via

p
S�� =

2!0L

c

p
Sh . (69)

We note that at higher frequencies, and/or for interfer-

ometers with longer arms, the conversion from h to �



What are we testing?
Fundamental Uncertainty in Light Ray Operators…

rL

t

2nd
mirror

1st
mirror

FIG. 1. A causal diamond. [KZ: We may need a new figure better adapted to this paper.]

horizons on the causal diamond shown in Fig. I:

X
v(y) = ˜̀2

p

Z
L

�L

du

Z
d
d�2

y
0
f(y, y0)Tuu(u, y

0) (1)

X
u(y) = ˜̀2

p

Z
L

�L

dv

Z
d
d�2

y
0
f(y, y0)Tvv(v, y

0), (2)

where Tuu, Tvv are the relevant components of the stress tensor, f(y, y0) is the Green function

of the Laplacian on the d � 2 transverse directions characterized by y. In the context of

the black hole S-matrix, ’t Hooft promoted these light ray operators to quantum objects by

postulating an uncertainty relation between ingoing and outgoing Hawking radiation:

hX
u(⌦)Xv(⌦0)i = l̃p

2
f(⌦,⌦0), (3)

where here we have used angular coordinates ⌦, ⌦0 to characterize the transverse direc-

tions on a black hole horizon. [KZ: Present this in terms of expectation value or

commutator? The latter is a more powerful statement.]

Upon inspection, these light sheet operators appear closely related to the modular Hamil-

tonian:

K =

Z

B

Tµ⌫⇠
µ
dB

⌫
, (4)

3
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sphere measured in Planck units. In fact, we will choose lmax so that the following identity

holds exactly

lmaxX

l=0

dimHl =
Area(L)

4G
(43)

where Area(L) denotes the area of a (d� 2)-sphere with radius L.

III. MODULAR ENERGY FLUCTUATIONS FROM SPHERICAL SHOCK WAVES

We now show that the two point correlation functions, Eq. 40, encapsulate fluctuations

in the modular Hamiltonian.

A. The modular Hamiltonian in terms of coordinate shifts

For this purpose we first need to write the analogue of the relations between the momen-

tum density and coordinate shifts for the spherical situations. We will define the momentum

density Pu(⌦) per unit angle via

Pu(⌦) = L
d�2

Z
L

�L

du Tuu(u,⌦) and Pv(⌦) = L
d�2

Z
L

�L

dv Tvv(v,⌦). (44)

The factor Ld�2 is inserted so that one obtains the complete momentum flux after integrating

over the angular coordinates ⌦, for instance,

P
tot

u
=

Z
d
d�2⌦Pu(⌦) = L

d�2

Z
d
d�2⌦

Z
L

�L

du Tuu. (45)

A similar equation holds for P tot

v
.

The modular Hamiltonian K can be identified with the Noether charge associated with

boost along the (Rindler) horizon. For an infinitesimal causal diamond, it takes the form

K = L
d�2

Z
d
d�2⌦du ⇠u(u,⌦)Tuu(u,⌦). (46)

Here [KZ: I think it’s premature to introduce this as it is not the same as the

CKV ⇠.]

X
u(u,⌦) = L� u+ �u(u,⌦). (47)

[KZ: Don’t see how the rest of this follows.] From Eq. 46, we can thus see that

the modular Hamiltonian can be expressed directly in terms of the coordinate shifts and the
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FIG. 1. A causal diamond. [KZ: We may need a new figure better adapted to this paper.]

horizons on the causal diamond shown in Fig. I:

X
v(y) = ˜̀2

p

Z
L

�L

du

Z
d
d�2

y
0
f(y, y0)Tuu(u, y

0) (1)

X
u(y) = ˜̀2

p

Z
L

�L

dv

Z
d
d�2

y
0
f(y, y0)Tvv(v, y

0), (2)

where Tuu, Tvv are the relevant components of the stress tensor, f(y, y0) is the Green function

of the Laplacian on the d � 2 transverse directions characterized by y. In the context of

the black hole S-matrix, ’t Hooft promoted these light ray operators to quantum objects by

postulating an uncertainty relation between ingoing and outgoing Hawking radiation:

hX
u(⌦)Xv(⌦0)i = l̃p

2
f(⌦,⌦0), (3)

where here we have used angular coordinates ⌦, ⌦0 to characterize the transverse direc-

tions on a black hole horizon. [KZ: Present this in terms of expectation value or

commutator? The latter is a more powerful statement.]

Upon inspection, these light sheet operators appear closely related to the modular Hamil-

tonian:

K =

Z

B

Tµ⌫⇠
µ
dB

⌫
, (4)

3

where ⇠
µ is the conformal Killing vector that preserves the diamond, and B is a d � 1

dimensional sphere at fixed time corresponding to the bifurcate horizon. In the context of

AdS/CFT, the modular Hamiltonian K microscopically defines the density matrix ⇢ of the

CFT on the boundary obtained by tracing out the complement of the region via

⇢ =
e
�2⇡K

Z
with Z = tr

�
e
�2⇡K

�
. (5)

It has been shown, utilizing techniques from AdS/CFT [? ? ? ], that both the expectation

value of the modular Hamiltonian and its fluctuations are given by the Bekenstein-Hawking

area law:

hKi =
⌦
(�K)2

↵
=

A⌃

4G
, (6)

where A⌃ is the area of the bifurcate horizon. Furthermore, it was argued, utilizing tech-

niques from an Randall-Sundrum Braneworld, as well as the dimensional reduction of Solo-

dukhin [? ], that these relations apply also to the vacuum state in flat space.

The main purpose of this paper is to show that one can obtain these same relations, Eq. 6,

also via shockwave geometries in flat, empty space, if one posits the shockwave uncertainty

relations, Eq. 3. We find that hKi and h�K
2
i also have particular relations to the light ray

operators, Eq. 1.

hKi =
1
˜̀2
p

Z
hr⌦X

u(⌦)r⌦X
v(⌦)i dd�2⌦ (7)

⌦
(�K)2

↵
=

1
˜̀4
p

Z Z
hr⌦X

u(⌦)r⌦0X
v(⌦0)i hr⌦0X

u(⌦0)r⌦X
v(⌦)i dd�2⌦ d

d�2⌦0
, (8)

where here we have chosen to write the expressions in terms of the angular integrals on the

spherical entangling surface.

Because the light ray operators correspond to shifts in position observables, there is the

possibility that modular fluctuations could be observable. In fact, one can see that the

four-point of the position operator scales as `4
p
S, such that

D
@⌦X @⌦0X

E
⇠ `

2
p

r
A⌃

4G
⇠ 4⇡`pL. (9)

The outline of this paper is as follows. In the next section we review the ’t Hooft-Dray

shockwave set-up and the uncertainty relations that ’t Hooft posited as a result of the

formalism. In Sec. ?? we derive our main result, Eqs. 6, 8, from shockwave geometries.

Then in Sec. ?? we discuss how these shockwave geometries could give rise to observably

large fluctuations in the infrared.

4

FIG. 2. We consider shockwave geometries of the type shown here, where vacuum fluctuations

Tuu(u, y) and Tvv(v, y) induce shifts in the light cone coordinates �v and �u on the lower and upper

half of the causal diamond, respectively.

to obtain the X
u equation of motion generates Ihorizon. We now describe each of these

contributions in turn.

For the unperturbed light trajectories, v is constant on the lower part, while u is constant

on the upper part. First let us concentrate on the lower part of the causal diamond. We

can then choose ⌧ = u, so that the action becomes

Ilower =

Z
d
d�2

y


� 1

`d�2
p

Z 0

�1
duX

u�y

dX
v

du
+

Z 0

�1
duX

u
Tuu

�
. (16)

Here we have assumed that the stress energy tensor is e↵ectively traceless, which in the

scaling regime appropriate for shockwave means that Tuv = 0. One easily verifies that by

varying X
u in the action Ilower one reproduces the correct shockwave equation for Xv

�y

dX
v

du
= `

d�2
p

Tuu. (17)

The other equation of motion obtained by varying X
v is also satisfied, since on this lower

trajectory dX
u
/du is a constant. When the equations of motion are satisfied one finds that

the integrand of the action integral, and hence the action Ilower itself, vanishes on-shell.

Similarly we define an action for the upper trajectory by interchanging the role of the u-

and v-coordinates and replacing X
u by X

v and vice versa. This gives

Iupper =

Z
d
d�2

y


1

`d�2
p

Z 1

0

dv X
v�y

dX
u

dv
+

Z 1

0

dv X
v
Tvv

�
(18)
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sphere measured in Planck units. In fact, we will choose lmax so that the following identity

holds exactly

lmaxX

l=0

dimHl =
Area(L)

4G
(43)

where Area(L) denotes the area of a (d� 2)-sphere with radius L.

III. MODULAR ENERGY FLUCTUATIONS FROM SPHERICAL SHOCK WAVES

We now show that the two point correlation functions, Eq. 40, encapsulate fluctuations

in the modular Hamiltonian.

A. The modular Hamiltonian in terms of coordinate shifts

For this purpose we first need to write the analogue of the relations between the momen-

tum density and coordinate shifts for the spherical situations. We will define the momentum

density Pu(⌦) per unit angle via

Pu(⌦) = L
d�2

Z
L

�L

du Tuu(u,⌦) and Pv(⌦) = L
d�2

Z
L
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dv Tvv(v,⌦). (44)

The factor Ld�2 is inserted so that one obtains the complete momentum flux after integrating

over the angular coordinates ⌦, for instance,
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=
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d�2⌦Pu(⌦) = L
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du Tuu. (45)

A similar equation holds for P tot

v
.

The modular Hamiltonian K can be identified with the Noether charge associated with

boost along the (Rindler) horizon. For an infinitesimal causal diamond, it takes the form

K = L
d�2

Z
d
d�2⌦du ⇠u(u,⌦)Tuu(u,⌦). (46)

Here [KZ: I think it’s premature to introduce this as it is not the same as the

CKV ⇠.]

X
u(u,⌦) = L� u+ �u(u,⌦). (47)

[KZ: Don’t see how the rest of this follows.] From Eq. 46, we can thus see that

the modular Hamiltonian can be expressed directly in terms of the coordinate shifts and the
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horizons on the causal diamond shown in Fig. I:
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f(y, y0)Tvv(v, y

0), (2)

where Tuu, Tvv are the relevant components of the stress tensor, f(y, y0) is the Green function

of the Laplacian on the d � 2 transverse directions characterized by y. In the context of

the black hole S-matrix, ’t Hooft promoted these light ray operators to quantum objects by

postulating an uncertainty relation between ingoing and outgoing Hawking radiation:

hX
u(⌦)Xv(⌦0)i = l̃p

2
f(⌦,⌦0), (3)

where here we have used angular coordinates ⌦, ⌦0 to characterize the transverse direc-

tions on a black hole horizon. [KZ: Present this in terms of expectation value or

commutator? The latter is a more powerful statement.]

Upon inspection, these light sheet operators appear closely related to the modular Hamil-

tonian:

K =

Z

B

Tµ⌫⇠
µ
dB

⌫
, (4)

3

where ⇠
µ is the conformal Killing vector that preserves the diamond, and B is a d � 1

dimensional sphere at fixed time corresponding to the bifurcate horizon. In the context of

AdS/CFT, the modular Hamiltonian K microscopically defines the density matrix ⇢ of the

CFT on the boundary obtained by tracing out the complement of the region via

⇢ =
e
�2⇡K

Z
with Z = tr

�
e
�2⇡K

�
. (5)

It has been shown, utilizing techniques from AdS/CFT [? ? ? ], that both the expectation

value of the modular Hamiltonian and its fluctuations are given by the Bekenstein-Hawking

area law:

hKi =
⌦
(�K)2

↵
=

A⌃

4G
, (6)

where A⌃ is the area of the bifurcate horizon. Furthermore, it was argued, utilizing tech-

niques from an Randall-Sundrum Braneworld, as well as the dimensional reduction of Solo-

dukhin [? ], that these relations apply also to the vacuum state in flat space.

The main purpose of this paper is to show that one can obtain these same relations, Eq. 6,

also via shockwave geometries in flat, empty space, if one posits the shockwave uncertainty

relations, Eq. 3. We find that hKi and h�K
2
i also have particular relations to the light ray

operators, Eq. 1.

hKi =
1
˜̀2
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, (8)

where here we have chosen to write the expressions in terms of the angular integrals on the

spherical entangling surface.

Because the light ray operators correspond to shifts in position observables, there is the

possibility that modular fluctuations could be observable. In fact, one can see that the

four-point of the position operator scales as `4
p
S, such that

D
@⌦X @⌦0X

E
⇠ `

2
p

r
A⌃
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⇠ 4⇡`pL. (9)

The outline of this paper is as follows. In the next section we review the ’t Hooft-Dray

shockwave set-up and the uncertainty relations that ’t Hooft posited as a result of the

formalism. In Sec. ?? we derive our main result, Eqs. 6, 8, from shockwave geometries.

Then in Sec. ?? we discuss how these shockwave geometries could give rise to observably

large fluctuations in the infrared.

4

Figure 4: The thermofield double and the first six multi-W states are drawn. In each case,
the next geometry is obtained from the previous by adding a shock either from the top left
or bottom left corner. The gray regions are sensitive to the details of a collision, but the
white regions are not. Using the time-folded bulk of [29], these states can be combined as
di↵erent sheets of an “accordion” geometry.

Because of the null shifts, all but one of the shock waves run from singularity to

singularity. Still, the leftmost one touches the boundary at time ±tw,7 making this time

locally distinguished in the CFT. One can also consider bulk solutions with the property

that all shocks run from singularity to singularity, leaving no locally distinguished time.

At the level of the bulk theory, there is nothing wrong with these geometries. However,

unlike the multi-W states described in this paper, we are not sure how or whether they

can be constructed in the CFT.

Our assumption that the {ti} are equal in magnitude and alternating in sign means that

the interior region of the resulting wormhole has a discrete translation symmetry. This

is simplest to understand if we consider building a geometry from an infinite sequence of

shocks. After k steps in the iterative procedure, the geometry to the left of all k shocks

will be unperturbed AdS-Schwarzschild. The geometry that gets built in that region by

the remaining (infinite) collection of shocks is therefore the same as the geometry to the

left of the first (k + 2) shocks.8

Using this translation invariance, we can understand the full geometry of the wormhole

by studying a “unit cell,” for which the geometry depends on ↵ but not n. Let us begin by

computing the length of the wormhole, i.e. the regularized length of the shortest geodesic

7
Here, we are backing o↵ the limit tw ! 1.

8
Notice that at finite E, this symmetry would be broken by a smoothly varying mass profile in the

wormhole, increasing from right to left. If we relax the assumption of equal times, this translation

invariance would also be broken by the fact that di↵erent W operators source shocks of varying strength.
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FIG. 2. We consider shockwave geometries of the type shown here, where vacuum fluctuations

Tuu(u, y) and Tvv(v, y) induce shifts in the light cone coordinates �v and �u on the lower and upper

half of the causal diamond, respectively.

to obtain the X
u equation of motion generates Ihorizon. We now describe each of these

contributions in turn.

For the unperturbed light trajectories, v is constant on the lower part, while u is constant

on the upper part. First let us concentrate on the lower part of the causal diamond. We

can then choose ⌧ = u, so that the action becomes

Ilower =

Z
d
d�2

y


� 1

`d�2
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�1
duX

u�y

dX
v

du
+

Z 0
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�
. (16)

Here we have assumed that the stress energy tensor is e↵ectively traceless, which in the

scaling regime appropriate for shockwave means that Tuv = 0. One easily verifies that by

varying X
u in the action Ilower one reproduces the correct shockwave equation for Xv

�y

dX
v

du
= `

d�2
p

Tuu. (17)

The other equation of motion obtained by varying X
v is also satisfied, since on this lower

trajectory dX
u
/du is a constant. When the equations of motion are satisfied one finds that

the integrand of the action integral, and hence the action Ilower itself, vanishes on-shell.

Similarly we define an action for the upper trajectory by interchanging the role of the u-

and v-coordinates and replacing X
u by X

v and vice versa. This gives

Iupper =
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d
d�2
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1
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dv
+
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