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Quantum Mechanics and General Relativity

* Quantum Mechanics and General Relativity make very accurate
predictions in their own realms

* These two theories are incompatible

* Many theories exist, like String Theory, LQG, etc, but either don’t
make testable predictions or their predictions have not been
supported by experiment

* Holographic quantum gravity theories point to detectable spacetime
fluctuations



The Proposed Signal
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Important Features: low amplitude, high frequency, stochastic, and has medium-range spatial correlations
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Problematic for 3 Generation GW Detectors
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The Detector
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What if we could build a detector limited by
classical noise instead of shot noise?
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Problems with Homodyne

* Homodyne is used in LVK detectors to sense amplitude and phase

* However, for excess power measurements, Homodyne is no longer
optimal

* Homodyne readout’s sensitivity is limited by the shot noise
* What is a better readout scheme for excess power measurements?

Homodyne readout scheme DC readout scheme




Photon Counting
SNR%ringe — TAf —q

e Consider an
interferometer with no

classical noise operated Time for SNR of 1 with Fringe Readout: 5.7 - 10° s

perfectly at the dark port = 1 week
* All photons are signal
photons! —o
* Much shorter integration S
time SNRcount Bl TAf S

Time for SNR of 1 with Photon Counting: 0.25 s



But there is carrier light and classical noise

* An interferometer can’t be operated at the dark fringe
e Conditions of a perfect interferometer can be mimicked with a

= (lassical Noise
= Signal

series of narrow optical band pass filters
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Time for SNR of 1 with Filtered
Photon Counting: 8.6 - 103 s =
2.4 hours



GQUEST Configuration

5m

1550 nm

* Using a power-recycled Michelson
interferometer

* Photon counting readout scheme

* Can still collect data with
homodyne readout and use it for
feedback control

* 10 W input, 10 kW circulating
power, 100 mW output power ot — s%

* 1550 nm light for use with Silicon TOEMXandEMY  peagou
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Noise Budget
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* Dominated by thermal noise from the optics: coating and bulk
* To reduce bulk noise, use thin, stiff, and high Q optics

* High thermal conductivity desirable to limit thermal lensing

* Silicon: stiff, high Q, high thermal conductivity 11



4 Requirements for Photon Counting

4 Optical Bandpass Filters with
1. Carrier suppression > 22 orders of magnitude
suppression in power

2. Low Dark Count Rate Detector > Single Photon Detector (SNSPD)

3. Low Classical Noise > Detector R&D

4. Small Contrast Defect > Excgl!ent Controls and
additional R&D



Optical Bandpass Filters

* 6 orders of magnitude of carrier suppression
each

* Bowtie Cavity Configuration
4 cavities in total to suppress carrier

* Multiple cavities also prevent higher-order
spatial modes and frequency modes from
leaking through

e 25 kHz integrated bandwidth
* Locked using 775 nm light
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SNSPD: Superconducting Nanowire Single
Photon Detector

* Used at the end of the Photon Counting
Readout

* Aiming for a Dark Count Rate an order of

magnitude below the signal level (which
would be 10™* Hz)

* Requires temperatures as low as 0.8 K

4 K stage

2 _—— 40-60K
¢ stage with
| fiber

%
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1 K stage with
SNSPD Filter stack @ 4 K 1



Full GQUEST Configuration

* Classical Noise still above Signal

* Two phase-locked, co-located Power
Recycled Interferometers to cross-
correlate

Inter ferometer A

Laser A

e Assuming stationarity of signal and noise, ...
only need one photon counting readout L"““E

* Can switch whether the output has just e
noise or signal + noise

e Potentially limited by noise at BS-C

Inter ferometer B

SNSPD

Photon Counting Readout %
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Highlight of other topics

* Custom Mirror Mount to hold optics and mode match by correcting
for astigmatism

* Laser Filter Cavity to reduce laser phase noise and act as a reference
for other cavities

* VVery beginning of work to make bandpass filters with atomic
transitions

16






Thank youl!



Extra Slides



Spacetime Fluctuations in LIGO
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More on Optical Bandpass Filters

* Finesse of 3000

* FSR of 125 MHz (2.4 m long)

e 42 kHz individual bandwidth

* Round Trip Guoy phase of 2 /3

* 10 ppm loss per mirror: 98% signal transmission

* Allow for an effective signal band between 8
MHz and 40 MHz
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Bowtie Cavity Laser Design
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Laser Filter Cavity Justification
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Custom Mirror Mount Design

CRDCRD CRDCED)
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Custom Mirror Mount Simulation

c Surface: Displacement field, Z component (m)

Surface: Displacement field, Z component (m)
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Eigenmode Decomposition Theory
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Eigenfrequency=9.3526E6 Hz Surface: Displacement field, Z component Eigenfrequency=9.3526E6 Hz Surface: Displacement field, Z component (m) =

* The mirror has (many)
eigenmodes

* Each eigenmode displaces
the mirror surface, which
affects the phase of the
light and looks like signal

* The strength of the noise
from each eigenmodes is
proportional to the
overlap integral of the
beam and the eigenmode




What are these modes?

Eigenfrequency=1.07E7 Hz Surface: Displ field, Z

it (m)

igenfreq y=9.3526E6 Hz Surface: Displ field, Z (m)
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Better Filter Justification

Noise FSD —— Unoptimized Filter: 0.000001
= Signal FSD 1 101! Optimized Filter: 0.004583
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“Quantum Gravity” measurement limit
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Limits on distance measurements from Quantum Gravity
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QX = Hoop Conjecture/ ‘Old’” holography (Y. Jack Ng & Van Dam)

o = Random walk, ‘New’ holography (Zurek & Verlinde, Hogan & Kwon)
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Light cone fluctuations accumulate like a random walk

time

« Step size:

51 ~ Ip

 Number of steps

L
lp

space

Total length: L :: VNOL ~L++/Llp

Can we detect displacements ~ /Ip L ~ 10_18\/Z m ?

Verlinde & Zurek (2019)

Hogan (2012) Sander M. Vermeulen



