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1. Constraints	on	Quantum	Gravity	Fluctuations	(Pixellon	Model)

a) Precision	Interferometers	present	and	future

b) Quantum	Gravity	constraints	from	interferometry

c) Quantum	Gravity	constraints	from	astronomical	image	blurring

2. Basics	of	Interferometry:

a) Homodyne	Readout

b) Photon	Counting	Readout
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Quantum	Gravity	fluctuations:	Pixellon	Model
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• Associate	a	stochastic	scalar	field	to	modular	energy	fluctuations:

• The	field	gravitates,	perturbing	the	metric:

àIFO	signal	spectrum:
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4	km

Existing	Interferometers
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@	100	Hz
Sensitivity:

LIGO	(USA)

@	1000	Hz

600	m

GEO600	(MPI,	Germany)

@	10	MHz

40	m

Holometer	(Fermilab)



Interferometers	being	built:

Sensitivity	to	length	changes:

Detection	statistic:

@	10	MHz

GQuEST	(Caltech)

5	m
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@	10	MHz
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QUEST	(Cardiff	University)

3	m



Pixellon	Model:	interferometric	constraints
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high-frequency events. For future detectors, we have
compared the geontropic signal with their design sensitiv-
ities, without considering removal of shot noise via the
quantum-correlation approach—even though at high
frequencies, where the constraints for geontropic noise
are the best, these detectors are limited by shot noise. It can
be anticipated that at these frequencies, these detectors’
shot noise dominates over other types of noise by a
significant factor. In this way, these detectors are capable
of putting much more stringent bounds on the geontropic α
parameter.

B. Equilateral triangle configurations

In this subsection, we consider configurations of multi-
ple interferometers with certain geometries. For GW
detections, these different geometries are helpful in retriev-
ing the polarization of GWs. One important configuration
is the equilateral triangle configuration of three interfer-
ometer arms, such as LISA [13], or three partially over-
lapping independent detectors, such as ET [20], as shown in
Fig. 5. For LISA, the signals of different arms can be time
shifted and linearly combined to form virtual Michelson
interferometers [74,75]. Nonetheless, as found in Ref. [11]
and discussed in Sec. VA, LISA is not promising for
detecting geontropic signals, so we will focus on the
specific configuration of ET.
In Sec. VA, we computed the auto-correlation of a single

interferometer within ET. Although the single-detector
quantum-correlation technique discussed in Sec. VA
allows us to dig under the shot noise, we are still limited
by nonquantum noises. On the other hand, geontropic
fluctuations modeled by the pixellon are correlated across
different ET detectors. For those uncorrelated nonquantum
noises, cross-correlating multiple ET detectors allows us to
dig under them with a suppression factor of ∼ðΓTÞ1=4. This

motivates the calculation of the cross-correlation of differ-
ent detectors within interferometer configurations such
as ET.
Let us consider one set of two interferometers across

different detectors within ET, e.g., the red and blue
detectors in Fig. 5, and pick the origin of coordinates at
the origin of the red detector x1. Let us also pick the x-y
plane to be the plane of the interferometers, with the x-axis
along n1. In this case,

FIG. 5. Setup of ET. The red, blue, and purple rays correspond
to the three detectors in ET, where we have only shown one of the
two interferometers within each detector. We choose not to plot
the mirrors at the endpoints of the light beams for simplicity.

FIG. 4. Pixellon strain (dashed and dotted lines) overlaid with the strain sensitivities for LIGO [12] and NEMO [70] (solid lines). The
LIGO data was obtained from the Livingston detector, and the NEMO data omits suspension thermal noise. The dotted lines give the
pixellon strain from Eq. (35) computed without an IR cutoff, and the dashed lines give the same quantity including the IR cutoff from
Eq. (28). We again compute the pixellon strain with α ¼ 1.
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Quantum	gravity	fluctuations:	constraints	from	
astronomical	image	blurring
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Lee	et	al.	(2023)
See	also	Ng,	Van	Dam,	Christiansen,	
Perlman,	Steinbring,	et	al.	(2006-2023)	



Quantum	gravity	fluctuations:	constraints	from	
astronomical	image	blurring
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“	…	image	distortion	effects	in	the	pixellon	model	are	strongly	
suppressed	[…],	thus	evading	all	existing	and	future	constraints.	”	

Lee	et	al.	(2023)

“[The	pixellon	model	is]	shown	to	predict	excessive	blurring	
of	images	from	distant	sources.”
Hogan	et	al.	(2023)

“[Holographic	quantum	gravity]	foam-induced	blurring	is	described,	
analogous	to	atmospheric	seeing	from	the	ground.	When	scaled	within	
the	fields	of	view	for	the	Fermi	and	Swift	instruments,	it	fits	all	[…]	data	
[...]	in	agreement	with	a	holographic	QG-favored	formulation.”

Steinbring	(2023)	

à	No	blurring	expected

à	Too	much	blurring	expected

à	Right	amount	of	blurring	
observed



Correlation	length	of	the	fluctuations	is	crucial	to	observability
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à	No	signal

à	No	signal

à	No	correlated	signal



Formalism	to	extract	EM	signatures	from	space-time	fluctuations
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• Perturbed	Metric:

• Two-point	correlation	functions:

à	Solve	relativistic	EM	wave	equation	on	metric,	
get	EM	correlation	tensor	for	experiment:



Laser	Interferometry	&	Photon	Counting



Laser	interferometry:	measuring	phase	modulations

Perturbations or
Reference	arm

Sig
nal
	arm
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Modulates	the	power	at	the	output

Field	in	signal	arm

Phase	modulation	of	the	carrier	field:



Expansion	for	

Frequency

Amplitude
Carrier

Signal	sideband

Sideband	fields
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Carrier	field:

+	Signal	sideband	fields

à	



Sideband	fields
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Carrier	field:

à	

+	Signal	sideband	fields

Frequency

Amplitude

Signal	sideband

Carrier

Expand	for	



Homodyne	Readout
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Introduce	a	small	static	arm-length	difference

à	Allows	carrier	field	to	leak	into	the	output:	

Frequency

Amplitude	(P)

Sidebands	beat	with	‘local	oscillator’
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Quantum	Shot	Noise
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Heisenberg	uncertainty	for	coherent	optical	state:

Frequency

Amplitude

Quantum	noise	‘sidebands’:



Homodyne	Readout:	Shot	Noise

Quantum	uncertainty	produces	measured	shot	noise

Frequency

Amplitude	(P)
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Homodyne	Readout:	Statistics
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Detection	statistic:

Can	we	do	better?

àYes,	with	photon	counting!

Frequency

Amplitude	(P)

4	orders	of	magnitude



Photon	Counting:	Intuition
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• Homodyne	readout	measures	time-dependence,	i.e.	phase/frequency	
of	the	signal

• The	signal	model	does	not	specify	these	properties…

à	time-dependence/phase/frequency	info	is	useless	for	finding	a	signal	
that	is	stationary/stochastic/broadband	

à	Devise	a	quantum	measurement	that	does	not	provide	useless	info,	
in	exchange	for	useful	info



Photon	Counting
Measure	the	number	of	photons	exactly:
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àNo	phase	info	measured

Practical	challenges	with	this	approach:

• Too	much	light	to	discern	single	signal	photons

• Too	many	non-signal	photons	
à	Can’t	count	photons	precisely

àMaximum	info	on	signal	power



Photon	Counting:	Filtering
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or or ?

Narrowband	optical	filter



Photon	Counting:	Statistics

Detection	statistic:
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Recall	for	Homodyne	readout:



Additional	Classical	Noise
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Frequency

Amplitude	(P)



Photon	Counting:	Statistics

Photon	counting	w/o	classical	noise:
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Homodyne	readout:

Photon	counting	w/	classical	noise:



1. Current	experiments	place	a	constraint	on	the	Pixellon	model	⍺	≲	O(1)

2. Two-point	correlations	of	quantum	gravity	fluctuations	are	an	integral	
part	of	testable	predictions

3. Photon	counting	interferometry	is	fundamentally	more	sensitive	than	
conventional	interferometry

4. GQuEST	can	test	the	Pixellon	Model	with	⍺	=	1	within	O(1)	day	of	
measurement	time	(at	5σ)

Conclusions
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